Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

The new lead vanadylphosphate $\mathrm{Pb}_{2} \mathrm{VO}\left(\mathrm{PO}_{4}\right)_{2}$

Roman V. Shpanchenko, ${ }^{\text {a }}$ Enrique E. Kaul, ${ }^{\text {b }}$ Christoph Geibel ${ }^{\text {b }}$ and Evgeny V. Antipov ${ }^{\text {a }}$

 Federation, and ${ }^{\text {b }}$ MPI CPfS, Noethnitzer Strasse 40, 01187 Dresden, Germany
Correspondence e-mail: shpanchenko@icr.chem.msu.ru
Received 20 March 2006
Accepted 7 June 2006
Online 12 September 2006
The structure of dilead vanadium oxide bis(phosphate) contains corrugated layers formed by VO_{5} square pyramids oriented in opposite directions in a chessboard fashion. The pyramids are connected by tetrahedral PO_{4} groups. The layers are separated by the Pb atoms and isolated PO_{4} tetrahedra.

Comment

Reduced vanadates and vanadylphosphates (with V atoms in oxidation states less than +5) often have different lowdimensional units, such as chains, ribbons or layers, in their structures. Such compounds attract the particular attention of researchers since they exhibit a variety of specific magnetic properties induced by highly correlated d-electrons (Ueda, 1998). Compounds with the general formula $A_{2} \mathrm{VO}\left(\mathrm{PO}_{4}\right)_{2}$ (where $A=\mathrm{Sr}$ and Ba) contain chains of $\mathrm{V}^{4+} \mathrm{O}_{6}$ octahedra or $\mathrm{V}^{4+} \mathrm{O}_{5}$ square pyramids in their structures (Wadewitz \& Mueller-Buschbaum, $1996 a, b$). The chains may be either isolated or linked into layers. Quite often these compounds are isostructural with the respective vanadylvanadates with the same stoichiometry. Recently, Mentre et al. (1999) have reported the synthesis of the ternary oxide $\mathrm{Pb}_{2} \mathrm{~V}_{3} \mathrm{O}_{9}$ with a structure similar to that of $\mathrm{Sr}_{2} \mathrm{VO}\left(\mathrm{PO}_{4}\right)_{2}$. The former structure is more distorted owing to the presence of a Pb^{2+} lone pair. Although structures of $A_{2} \mathrm{VO}\left(\mathrm{PO}_{4}\right)_{2}(A=\mathrm{Sr}$ and Ba$)$ vanadylphosphates were described some time ago, the corresponding lead compound has not yet been reported. Recently, we synthesized $\mathrm{Pb}_{2} \mathrm{VO}\left(\mathrm{PO}_{4}\right)_{2}$ and found that it exhibits interesting and quite unusual magnetic properties (Kaul et al., 2004).

Three projections of the $\mathrm{Pb}_{2} \mathrm{VO}\left(\mathrm{PO}_{4}\right)_{2}$ structure are shown in Fig. 1. The structure contains corrugated layers formed by VO_{5} square pyramids oriented in opposite directions in a chessboard fashion. The pyramids are connected by tetrahedral PO_{4} groups. The waves in the layers propagate along the b axis. The square bases of the similarly oriented pyramids are located approximately at the same level. The [VOPO_{4}] layers are separated by Pb atoms and isolated PO_{4} tetrahedra.

The V atom is coordinated by five O atoms, forming a distorted square pyramid (Fig. 2a). A short V1-O9 distance [1.558 (13) \AA] indicates the existence of a vanadyl bond. The basal distances are in the range 1.954 (15)-2.024 (14) A. The V -atom polyhedron may also be considered as a distorted octahedron, with a long V1-O2 distance of 2.484 (17) \AA. Although Schindler et al. (2000) suggested considering this bond length as trans to the vanadyl bond in a square-bipyramidal coordination, a pyramidal representation in our case is more reasonable. This conclusion is supported by the τ-criteria calculation (Addison et al., 1984), resulting in a value of $\tau=0.06$, corresponding to a square-pyramidal coordination. Additionally, the $\mathrm{O} 9-\mathrm{V} 1-\mathrm{O} 2$ angle is $170.3(7)^{\circ}$, while in a square-bipyramidal or octahedral coordination this angle is closer to 180°.

The coordination polyhedron of atom Pb 1 (Fig. 2b) has a flat base formed by five O atoms, and two additional atoms, $\mathrm{O} 3^{\mathrm{i}}$ and $\mathrm{O} 8^{\mathrm{iii}}$, are located above the base (see Table 1 for symmetry codes). The $\mathrm{Pb} 1-\mathrm{O}^{\mathrm{i}}$ and $\mathrm{Pb} 1-\mathrm{O} 8^{\text {iii }}$ distances are noticeably shorter [2.468 (15) and 2.335 (17) Å, respectively] than those for the basal atoms. This arrangement appears to be due to the presence of a lone pair, which should be located under the pentagonal base opposite atoms $\mathrm{O} 3^{\mathrm{i}}$ and $\mathrm{O} 8^{\text {iiii. The }}$ Pb 2 coordination polyhedron looks more complicated (Fig. 2c). Nevertheless, one can note that in this case the lone pair should be situated opposite atom O 2 .
$\mathrm{Sr}_{2} \mathrm{VO}\left(\mathrm{PO}_{4}\right)_{2}$ is isotypic with $\mathrm{Sr}_{2} \mathrm{VO}\left(\mathrm{VO}_{4}\right)_{2}$ and $\mathrm{Pb}_{2} \mathrm{VO}$ $\left(\mathrm{VO}_{4}\right)_{2}$ vanadates in spite of distortions induced by the lone pair of the Pb atom. One may expect that the same or a similar structural motif would be realized in the structure of $\mathrm{Pb}_{2} \mathrm{VO}\left(\mathrm{PO}_{4}\right)_{2}$. However, the $\mathrm{Pb}_{2} \mathrm{VO}\left(\mathrm{PO}_{4}\right)_{2}$ structure is completely different. This may be explained by the presence of the Pb^{2+} lone pair, leading to a strongly asymmetric coordination of these cations, together with the reduced size of the tetrahedral groups (the average distances are $1.55 \AA$ in PO_{4} versus $1.65 \AA$ in VO_{4}). The fact that mixed vanadylphosphates $A M \mathrm{VO}\left(\mathrm{PO}_{4}\right)_{2}(A=\mathrm{Sr}$ and $\mathrm{Ba} ; M=\mathrm{Zn}$ and Cd$)$ (MuellerBuschbaum \& Meyer, 1997; Mueller-Buschbaum et al., 1997) have crystal structures very similar to that of $\mathrm{Pb}_{2} \mathrm{VO}\left(\mathrm{PO}_{4}\right)_{2}$

Figure 1
The crystal structure of $\mathrm{Pb}_{2} \mathrm{VO}\left(\mathrm{PO}_{4}\right)_{2}$.

Figure 2
Coordination polyhedra for the $(a) \mathrm{V} 1,(b) \mathrm{Pb} 1$ and $(c) \mathrm{Pb} 2$ atoms.

Figure 3
The $\left[\mathrm{VO} \mathrm{XO}_{4}\right.$] layers $(X=\mathrm{P}$ and Si$)$ formed by VO_{5} square pyramids and tetrahedral $X \mathrm{O}_{4}$ groups in $(a) \mathrm{Pb}_{2} \mathrm{VO}\left(\mathrm{PO}_{4}\right)_{2}$, (b) $\mathrm{BaZnVO}\left(\mathrm{PO}_{4}\right)_{2},(c)$ $\mathrm{LiVOSiO}_{4}$ and $(d) \mathrm{Pb}(\mathrm{VO})_{2}\left(\mathrm{PO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$. (In the latter structure, large circles represent Pb atoms, medium circles O atoms and small circles H atoms.)
allows us to draw some conclusions about the role of the Pb^{2+} lone pair and thus explain the differences between $\mathrm{Pb}_{2} \mathrm{VO}\left(\mathrm{PO}_{4}\right)_{2}$ and $\mathrm{Pb}_{2} \mathrm{VO}\left(\mathrm{VO}_{4}\right)_{2}$. A noticeable difference in the A and M ionic radii $\left\{\mathrm{Zn}^{2+}\right.$ [coordination number (CN) 4] = $0.74 \AA, \mathrm{Sr}^{2+}(\mathrm{CN} 8)=1.39 \AA$ and $\left.\mathrm{Ba}^{2+}(\mathrm{CN} 8)=1.56 \AA\right\}$ results in different coordination arrangements for these two cations. Thus, alkali-earth atoms are coordinated by eight O atoms and Zn atoms are tetrahedrally coordinated, while in the title structure both Pb atoms [the ionic radius of $\mathrm{Pb}^{2+}(\mathrm{CN} 8)$ is $1.45 \AA$] are surrounded by seven O atoms. The V atoms in $A M V O\left(\mathrm{PO}_{4}\right)_{2}$ structures are in octahedral coordinations with
much shorter trans bonds, viz. 2.188 and $2.391 \AA$ for the Sr and Ba phases, respectively. Note that even in the case of BaZn $\mathrm{VO}\left(\mathrm{PO}_{4}\right)_{2}$, the trans bond $(2.43 \AA)$ is shorter than that in $\mathrm{Pb}_{2} \mathrm{VO}\left(\mathrm{PO}_{4}\right)_{2}[2.484(17) \AA]$. The larger the difference of the ionic radius of the A cation, the larger the average displacement of the V atom from the equatorial plane of the square pyramid, viz. 0.12 and $0.25 \AA$ for $\mathrm{Sr}-$ and Ba -containing structures, respectively. However, it is still less than that in the Pb -containing structure $(0.35 \AA)$. Additionally, in both Zn containing vanadylphosphates, the $\mathrm{O}_{\text {vanadyl }}-\mathrm{V}-\mathrm{O}_{\text {trans }}$ angle is 175.7°, in contrast to the value of $170.3(7)^{\circ}$ found in the studied structure. From this consideration, one may conclude that the effect of the lone pair in the $\mathrm{Pb}_{2} \mathrm{VO}\left(\mathrm{PO}_{4}\right)_{2}$ structure is somewhat similar to the result of ordering of two A cations with markedly different atomic radii.

The most likely reason for corrugation of the layers is the presence of the extra tetrahedra between them (Fig. 3). Thus, in both $\mathrm{Pb}_{2} \mathrm{VO}\left(\mathrm{PO}_{4}\right)_{2}$ and $\mathrm{BaZnVO}\left(\mathrm{PO}_{4}\right)_{2}$ (Figs. $3 a$ and $3 b$, respectively), extra PO_{4} tetrahedra are located between the [VOPO_{4}] layers. In the $\mathrm{Li}_{2} \mathrm{VOSiO}_{4}$ structure (Millet \& Satto, 1998), adjacent $\left[\mathrm{VOSiO}_{4}\right]$ layers with a similar type of polyhedral linkage are flat, since they are separated only by Li^{+} cations (Fig. 3c). The same type of $\left[(\mathrm{VO})_{2}\left(\mathrm{PO}_{4}\right)_{2}\right]$ layer was found in $\mathrm{Pb}(\mathrm{VO})_{2}\left(\mathrm{PO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Kang et al., 1992) (Fig. 3d), in which the layers are separated by Pb atoms and water molecules. In contrast to the $\left[\mathrm{VOPO}_{4}\right]$ layers in the title compound, the $\left[\mathrm{VO}\left(\mathrm{PO}_{4}\right)\right](X=\mathrm{P}$ and Si$)$ layers in $\mathrm{Li}_{2} \mathrm{VOSiO}_{4}$ and $\mathrm{Pb}(\mathrm{VO})_{2}\left(\mathrm{PO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ are almost flat.

Experimental

Green plate-shaped crystals of $\mathrm{Pb}_{2} \mathrm{VO}\left(\mathrm{PO}_{4}\right)_{2}$ were obtained by slow cooling of a melted stoichiometric mixture of $\mathrm{Pb}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and VO_{2} from 1073 to 973 K in a dynamic vacuum followed by furnace cooling.

Crystal data

$\mathrm{Pb}_{2} \mathrm{VO}\left(\mathrm{PO}_{4}\right)_{2}$
$M_{r}=671.3$
Monoclinic, $P 2_{1} / a$
$a=8.747(4) \AA$
$b=9.016(5) \AA$
$Z=4$
$D_{x}=5.837 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$c=9.863(9) \AA$
$\beta=100.96(4)^{\circ}$
$\mu=45.63 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$\beta=100.96(4)^{\circ}{ }^{\circ}$
$V=763.6(9) \AA^{3}$

Plate, green
$0.24 \times 0.18 \times 0.08 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer
ω / θ scans
Absorption correction: Gaussian
(CAD-4 User's Manual; Enraf-Nonius, 1988)
$T_{\text {min }}=0.004, T_{\text {max }}=0.024$
4932 measured reflections

Refinement

Refinement on F
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.045$
$S=1.62$
2020 reflections
128 parameters
$w=1 /\left[\sigma^{2}(F)+0.000625 F^{2}\right]$

2703 independent reflections
2020 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.062$
$\theta_{\text {max }}=34.1^{\circ}$
2 standard reflections
every 120 mins
intensity decay: 7.9\%
$(\Delta / \sigma)_{\max }=0.009$ 。
$\Delta \rho_{\text {max }}=5.11 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.35$ e \AA^{-3}
Extinction correction: B-C type 1 Lorentzian isotropic (Becker \& Coppens, 1974)
Extinction coefficient: 0.18 (2)

Table 1
Selected geometric parameters $\left({ }^{(},{ }^{\circ}\right)$.

$\mathrm{Pb} 1-\mathrm{O} 1^{\text {i }}$	2.660 (13)	$\mathrm{V} 1-\mathrm{O} 1^{\text {i }}$	1.999 (14)
$\mathrm{Pb} 1-\mathrm{O} 3$	2.860 (16)	V1-O2	2.484 (17)
$\mathrm{Pb} 1-\mathrm{O} 3^{\text {i }}$	2.468 (15)	V1-O5	2.024 (14)
$\mathrm{Pb} 1-\mathrm{O} 4{ }^{\text {ii }}$	2.663 (16)	$\mathrm{V} 1-\mathrm{O} 6^{\text {vi }}$	1.975 (14)
$\mathrm{Pb} 1-\mathrm{O} 4^{\text {i }}$	2.978 (14)	$\mathrm{V} 1-\mathrm{O} 7^{\text {vii }}$	1.954 (15)
$\mathrm{Pb} 1-\mathrm{O} 5{ }^{\text {i }}$	2.771 (15)	V1-O9	1.558 (13)
$\mathrm{Pb} 1-\mathrm{O} 8^{\text {iii }}$	2.335 (17)	P1-O2	1.519 (19)
$\mathrm{Pb} 2-\mathrm{O} 2{ }^{\text {iii }}$	2.423 (16)	P1-O3	1.519 (15)
$\mathrm{Pb} 2-\mathrm{O} 3$	2.737 (18)	P1-O4	1.554 (15)
$\mathrm{Pb} 2-\mathrm{O} 4{ }^{\text {ii }}$	2.449 (15)	P1-O8	1.496 (20)
$\mathrm{Pb} 2-\mathrm{O} 6^{\text {iv }}$	2.725 (13)	$\mathrm{P} 2-\mathrm{O} 1$	1.550 (15)
$\mathrm{Pb} 2-\mathrm{O}^{\text {iv }}$	2.482 (12)	P2-O5	1.482 (13)
Pb2-O8	2.693 (19)	P2-O6	1.520 (13)
$\mathrm{Pb} 2-\mathrm{O} 9^{\text {v }}$	2.825 (15)	P2-O7	1.558 (15)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{V} 1-\mathrm{O} 2$	81.6 (5)	$\mathrm{O} 7^{\text {vii }}-\mathrm{V} 1-\mathrm{O} 9$	98.3 (7)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{V} 1-\mathrm{O} 5$	85.4 (6)	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 3$	112.0 (11)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{V} 1-\mathrm{O}^{\text {vi }}$	158.8 (5)	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 4$	107.5 (9)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{V} 1-\mathrm{O} 7^{\mathrm{vii}}$	88.1 (6)	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 8$	109.9 (10)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{V} 1-\mathrm{O} 9$	100.3 (7)	$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 4$	108.1 (8)
$\mathrm{O} 2-\mathrm{V} 1-\mathrm{O} 5$	90.3 (6)	O3-P1-O8	105.8 (10)
$\mathrm{O} 2-\mathrm{V} 1-\mathrm{O}^{\text {vi }}$	77.3 (5)	O4-P1-O8	113.6 (9)
$\mathrm{O} 2-\mathrm{V} 1-\mathrm{O} 7^{\text {vii }}$	72.2 (5)	$\mathrm{O} 1-\mathrm{P} 2-\mathrm{O} 5$	107.3 (8)
$\mathrm{O} 2-\mathrm{V} 1-\mathrm{O} 9$	170.3 (7)	O1-P2-O6	113.4 (8)
$\mathrm{O} 5-\mathrm{V} 1-\mathrm{O}^{\text {vi }}$	92.3 (6)	$\mathrm{O} 1-\mathrm{P} 2-\mathrm{O} 7$	108.4 (8)
$\mathrm{O} 5-\mathrm{V} 1-\mathrm{O} 7^{\text {vii }}$	162.1 (5)	O5-P2-O6	111.5 (8)
O5-V1-O9	99.3 (7)	O5-P2-O7	115.4 (8)
$\mathrm{O} 6^{\text {vi }}-\mathrm{V} 1-\mathrm{O}^{\text {vii }}$	87.7 (6)	O6-P2-O7	100.9 (7)
$\mathrm{O} 6^{\text {vi }}-\mathrm{V} 1-\mathrm{O} 9$	100.9 (6)		

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{1}{2}, z$; (ii) $-x+\frac{1}{2}, y-\frac{1}{2},-z+1$; (iii) $-x+1,-y+1$, $-z+1$; (iv) $x+\frac{1}{2},-y+\frac{1}{2}, z+1$; (v) $x, y, z+1$; (vi) $-x,-y+1,-z$; (vii) $-x+\frac{1}{2}$, $y+\frac{1}{2},-z$.

Our preliminary studies indicated the presence of superstructure reflections for some crystals. Therefore, the crystals under investi-
gation were checked carefully for the presence of superstructure, but no additional superstructure reflections were found. Nevertheless, a strong positive maximum exists in the difference Fourier map near atom $\mathrm{Pb} 1(0.66 \AA)$. This maximum, as well as the relatively high displacement parameters for O atoms, may indicate that some domains in the crystal have modulated structure. Additional electron microscopy and X-ray structural studies are needed to clarify the type and the origin of the superstructure.

Data collection: CAD-4 User's Manual (Enraf-Nonius, 1988); cell refinement: CAD4 User's Manual; data reduction: CSD (Akselrud et al., 1993); program(s) used to solve structure: CSD; program(s) used to refine structure: JANA2000 (Petricek \& Dusek, 2000); molecular graphics: ATOMS (Dowty, 1988); software used to prepare material for publication: JANA2000.

The authors are grateful to RFBR (grant No. 04-03-32787) and ICDD (grant No. GiA 91-05APS) for financial support, and thank A. Mironov for fruitful discussions and help in the preparation of the paper.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV3010). Services for accessing these data are described at the back of the journal.

References

Addison, A. W., Rao, T. N., Reedijk, J., Van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.

Akselrud, L. G., Zavalii, P. Yu., Grin, Yu. N., Pecharski, V. K., Baumgartner, B. \& Woelfel, E. (1993). Mater. Sci. Forum, 133-136, 335-340.
Becker, P. J. \& Coppens, P. (1974). Acta Cryst. A30, 129-147.
Dowty, E. (1998). ATOMS for Windows. Version 5.0. Shape Software, Kingsport, Tennessee, USA.
Enraf-Nonius (1988). CAD-4 User's Manual. Enraf-Nonius, Delft, The Netherlands.
Kang, H. Y., Lee, W. C. \& Wang, S. L. (1992). Inorg. Chem. 31, 4743-4748.
Kaul, E. E., Rosner, H., Shannon, N., Shpanchenko, R. V. \& Geibel, C. (2004). J. Magn. Magn. Mater. 272-276, 922-923.

Mentre, O., Dhaussy, A. C., Abraham, F., Suard, E. \& Steinfink, H. (1999). Chem. Mater. 11, 2408-2416.
Millet, P. \& Satto, C. (1998). Mater. Res. Bull. 33, 1339-1345.
Mueller-Buschbaum, Hk. \& Meyer, S. (1997). Z. Naturforsch. Teil B, 52, 367371.

Mueller-Buschbaum, Hk., Meyer, S. \& Mertens, B. (1997). Z. Naturforsch. Teil B, 52, 985-988.
Petricek, V. \& Dusek, M. (2000). JANA2000. Institute of Physics, Praha, Czech Republic.
Schindler, M., Hawthorne, F. C. \& Baur, W. H. (2000). Chem. Mater. 12, 12481259.

Ueda, Y. (1998). Chem. Mater. 10, 2653-2664.
Wadewitz, C. \& Mueller-Buschbaum, Hk. (1996a). Z. Naturforsch. Teil B, 51, 929-933.
Wadewitz, C. \& Mueller-Buschbaum, Hk. (1996b). Z. Naturforsch. Teil B, 51, 1290-1294.

